An overview of the effects of algorithm use on judgmental biases affecting forecasting
Alvaro Chacon and
Esther Kaufmann
International Journal of Forecasting, 2025, vol. 41, issue 2, 424-439
Abstract:
In the realm of forecasting, judgmental biases often hinder efficiency and accuracy. Algorithms present a promising avenue for decision makers to enhance their forecasting performance. In this overview, we scrutinized the occurrence of the most relevant judgmental biases affecting forecasting across 162 papers, drawing from four recent reviews and papers published in forecasting journals, specifically focusing on the use of algorithms. Thirty-three of the 162 papers (20.4%) at least briefly mentioned one of twelve judgmental biases affecting forecasting. Our comprehensive analysis suggests that algorithms can potentially mitigate the adverse impacts of biases inherent in human judgment related to forecasting. Furthermore, these algorithms can leverage biases as an advantage, enhancing forecast accuracy. Intriguing revelations have surfaced, focusing mainly on four biases. By providing timely, relevant, well-performing, and consistent algorithmic advice, people can be effectively influenced to improve their forecasts, considering anchoring, availability, inconsistency, and confirmation bias. The findings highlight the gaps in the current research landscape and provide recommendations for practitioners. They also lay the groundwork for future studies on utilizing algorithms (e.g., large language models) and overcoming judgmental biases to improve forecasting performance.
Keywords: Judgmental biases; Algorithm use; Judgmental accuracy; Judgmental forecasting; Judgmental adjustment; Review article (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207024001018
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:41:y:2025:i:2:p:424-439
DOI: 10.1016/j.ijforecast.2024.09.007
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().