Investigating laypeople’s short- and long-term forecasts of COVID-19 infection cycles
Moon Su Koo,
Yun Shin Lee and
Matthias Seifert
International Journal of Forecasting, 2025, vol. 41, issue 2, 452-465
Abstract:
How do laypeople anticipate the severity of the COVID-19 pandemic in the short and long term? The evolution of COVID-19 infection cases is characterized by wave-shaped cycles, and we examine how individuals make forecasts for this type of time series. Over 42 weeks, we ran forecasting experiments and elicited weekly judgments from the general public to analyze their forecasting behavior (Study 1). We find that laypeople often tend to dampen trends when generating judgmental forecasts, but the degree to which this happens depends on the evolution of the cyclic time series data. The observed forecasting behavior reveals evidence of an optimism bias in that people do not expect the number of infection cases to grow at the observed rate while believing that infection rates would drop at an even faster rate than they are. Also, our results suggest that laypeople’s forecasting judgments are affected by the magnitude of the present wave relative to the previously observed ones. Further, we provide evidence that laypeople rely on a cognitive heuristic for generating long-term forecasts. People tend to rely on a linear discounting rule in that they lower their long-term forecasts proportionally to the interval of the forecast horizon, i.e., from tomorrow to 6 months and from 6 months to 1 year. We also find that this linear discounting rule can change to an exponential one in reaction to externally generated optimistic information signals such as vaccine approval. Furthermore, we replicated the major findings of Study 1 in a more controlled setting with a hypothetical pandemic scenario and artificially generated time series (Study 2). Overall, the current research contributes to the judgmental forecasting literature and provides practical implications for decision-makers in the pandemic.
Keywords: Infection cases; Judgmental forecasting; Cyclic time series; Trend damping; Optimism bias; Long-term forecasting heuristic (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207023001309
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:41:y:2025:i:2:p:452-465
DOI: 10.1016/j.ijforecast.2023.11.008
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().