Robust recalibration of aggregate probability forecasts using meta-beliefs
Cem Peker and
Tom Wilkening
International Journal of Forecasting, 2025, vol. 41, issue 2, 613-630
Abstract:
Previous work suggests that aggregate probabilistic forecasts on a binary event are often conservative. Extremizing transformations that adjust the aggregate forecast away from the uninformed prior of 0.5 can improve calibration in many settings. However, such transformations may be problematic in decision problems where forecasters share a biased prior. In these problems, extremizing transformations can introduce further miscalibration. We develop a two-step algorithm where we first estimate the prior using each forecaster’s belief about the average forecast of others. We then transform away from this estimated prior in each forecasting problem. Our algorithm works in single-question forecasting problems and does not require past data. Evidence from experimental prediction tasks suggests that the resulting average probability forecast is robust to biased priors and improves calibration.
Keywords: Judgment aggregation; Wisdom of crowds; Forecasting; Extremization; Recalibration; Meta-beliefs (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207024000992
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:41:y:2025:i:2:p:613-630
DOI: 10.1016/j.ijforecast.2024.09.005
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().