Efficiency of poll-based multi-period forecasting systems for German state elections
Markus Fritsch,
Harry Haupt and
Joachim Schnurbus
International Journal of Forecasting, 2025, vol. 41, issue 2, 670-688
Abstract:
Election polls are frequently employed to reflect voter sentiment with respect to a particular election (or fixed-event). Despite their widespread use as forecasts and inputs for predictive algorithms, there is substantial uncertainty regarding their efficiency. This uncertainty is amplified by judgment in the form of pollsters applying unpublished weighting schemes to ensure the representativeness of the sampled voters for the underlying population. Efficient forecasting systems incorporate past information instantly, which renders a given fixed-event unpredictable based on past information. This results in all sequential adjustments of the fixed-event forecasts across adjacent time periods (or forecast revisions) being martingale differences. This paper illustrates the theoretical conditions related to weak efficiency of fixed-event forecasting systems based on traditional least squares loss and asymmetrically weighted least absolute deviations (or quantile) loss. Weak efficiency of poll-based multi-period forecasting systems for all German federal state elections since the year 2000 is investigated. The inefficiency of almost all considered forecasting systems is documented and alternative explanations for the findings are discussed.
Keywords: Fixed-event forecasting; Multiple lead times; Forecast efficiency; Weak efficiency concepts; Quantile loss; Election forecasting (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207024000396
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:41:y:2025:i:2:p:670-688
DOI: 10.1016/j.ijforecast.2024.04.008
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().