EconPapers    
Economics at your fingertips  
 

On memory-augmented gated recurrent unit network

Maolin Yang, Muyi Li and Guodong Li

International Journal of Forecasting, 2025, vol. 41, issue 2, 844-858

Abstract: This paper addresses the challenge of forecasting multivariate long-memory time series. While statistical models such as the autoregressive fractionally integrated moving average (ARFIMA) and hyperbolic generalized autoregressive conditional heteroscedasticity (HYGARCH) can capture long-memory effects in time series data, they are often limited by dimensionality and parametric specification. Alternatively, recurrent neural networks (RNNs) are popular tools for approximating complex structures in sequential data. However, the lack of long-memory effect of these networks has been justified from a statistical perspective. In this paper, we propose a new network process called the memory-augmented gated recurrent unit (MGRU), which incorporates a fractionally integrated filter into the original GRU structure. We investigate the long-memory effect of the MGRU process, and demonstrate its effectiveness at capturing long-range dependence in real applications. Our findings illustrate that the proposed MGRU network outperforms existing models, indicating its potential as a promising tool for long-memory time series forecasting.

Keywords: Long memory effect; Long memory network process; Memory-augmented GRU; Volatility forecasting; Sentiment analysis (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016920702400075X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:41:y:2025:i:2:p:844-858

DOI: 10.1016/j.ijforecast.2024.07.008

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-24
Handle: RePEc:eee:intfor:v:41:y:2025:i:2:p:844-858