Fan charts 2.0: Flexible forecast distributions with expert judgement
Andrej Sokol
International Journal of Forecasting, 2025, vol. 41, issue 3, 1148-1164
Abstract:
I propose a new model, conditional quantile regression (CQR), that generates density forecasts consistent with a specific view of the future evolution of some of the explanatory variables. This addresses a shortcoming of existing quantile regression-based models in settings that require forecasts to be conditional on technical assumptions, such as most forecasting processes within policy institutions. Through an application to house price inflation in the euro area, I show that CQR provides a viable alternative to conditional density forecasting with Bayesian VARs, with added flexibility and further insights that do not come at the cost of forecasting performance.
Keywords: At risk; Conditional forecasting; Density forecast evaluation; House prices; Quantile regression (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207024001262
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:41:y:2025:i:3:p:1148-1164
DOI: 10.1016/j.ijforecast.2024.11.009
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().