Predicting value at risk for cryptocurrencies with generalized random forests
Rebekka Buse,
Konstantin Görgen and
Melanie Schienle
International Journal of Forecasting, 2025, vol. 41, issue 3, 1199-1222
Abstract:
We study the prediction of value at risk (VaR) for cryptocurrencies. In contrast to classic assets, returns of cryptocurrencies are often highly volatile and characterized by large fluctuations around single events. Analyzing a comprehensive set of 105 major cryptocurrencies, we show that generalized random forests (GRF) adapted to quantile prediction have superior performance over other established methods such as quantile regression, GARCH-type models, and CAViaR models. This advantage is especially pronounced in unstable times and for classes of highly volatile cryptocurrencies. Furthermore, we identify important predictors during such times and show their influence on forecasting over time. Moreover, a comprehensive simulation study indicates that the GRF methodology is at least on par with existing methods in VaR predictions for standard types of financial returns, and clearly superior in the cryptocurrency setup.
Keywords: Generalized random forests; Value at risk; Quantile prediction; Backtesting; Cryptocurrencies (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207024001304
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:41:y:2025:i:3:p:1199-1222
DOI: 10.1016/j.ijforecast.2024.12.002
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().