EconPapers    
Economics at your fingertips  
 

Predicting value at risk for cryptocurrencies with generalized random forests

Rebekka Buse, Konstantin Görgen and Melanie Schienle

International Journal of Forecasting, 2025, vol. 41, issue 3, 1199-1222

Abstract: We study the prediction of value at risk (VaR) for cryptocurrencies. In contrast to classic assets, returns of cryptocurrencies are often highly volatile and characterized by large fluctuations around single events. Analyzing a comprehensive set of 105 major cryptocurrencies, we show that generalized random forests (GRF) adapted to quantile prediction have superior performance over other established methods such as quantile regression, GARCH-type models, and CAViaR models. This advantage is especially pronounced in unstable times and for classes of highly volatile cryptocurrencies. Furthermore, we identify important predictors during such times and show their influence on forecasting over time. Moreover, a comprehensive simulation study indicates that the GRF methodology is at least on par with existing methods in VaR predictions for standard types of financial returns, and clearly superior in the cryptocurrency setup.

Keywords: Generalized random forests; Value at risk; Quantile prediction; Backtesting; Cryptocurrencies (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207024001304
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:41:y:2025:i:3:p:1199-1222

DOI: 10.1016/j.ijforecast.2024.12.002

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-06-18
Handle: RePEc:eee:intfor:v:41:y:2025:i:3:p:1199-1222