Modeling and predicting failure in US credit unions
Qiao Peng,
Donal McKillop,
Barry Quinn and
Kailong Liu
International Journal of Forecasting, 2025, vol. 41, issue 3, 1237-1259
Abstract:
This study presents a random forest (RF)-based machine learning model to predict the liquidation of US credit unions one year in advance. The model demonstrates impressive accuracy on the test set (97.9% accuracy, with 2.0% false negatives and 8.8% false positives) when utilizing all 44 factors. Simplifying the model to only the top five factors based on feature importance analysis results in a slightly lower, but still significant, accuracy on the test set (92.2% accuracy, with 7.8% false negatives and 17.6% false positives). Comparisons with seven other classification methods verify the superiority of the RF model. This study also uses the Cox proportional-hazards model and Shapley value-based approaches to interpret key feature significance and interactions. The model provides regulators and credit unions with a valuable early warning system for potential failures, enabling corrective measures or strategic mergers to ultimately protect the National Credit Union Share Insurance Fund.
Keywords: Random forest; Interpretable machine learning; Explainable AI; Failure prediction; Feature selection; Credit unions (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207024001328
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:41:y:2025:i:3:p:1237-1259
DOI: 10.1016/j.ijforecast.2024.12.004
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().