Forecasting stock market return with anomalies: Evidence from China
Jianqiu Wang,
Zhuo Wang and
Ke Wu
International Journal of Forecasting, 2025, vol. 41, issue 3, 1278-1295
Abstract:
We empirically investigate the relation between anomaly portfolio returns and market return predictability in the Chinese stock market. Using 132 long-leg, short-leg, and long-short anomaly portfolio returns, we employ various shrinkage-based statistical learning methods to capture predictive signals of the anomalies in a high-dimensional setting. Our analysis reveals statistically and economically significant return predictability using long- and short-leg anomaly portfolio returns. Moreover, high arbitrage risk enhances forecasting performance, supporting that the predictability stems from mispricing correction persistence. Contrary to findings in the US stock market, we find little evidence that the long-short anomaly portfolios contribute to market return predictability in China, due to the low persistence of asymmetric mispricing corrections. We provide simulation evidence to justify the distinct prediction patterns for the US and Chinese stock markets.
Keywords: Anomalies; Mispricing; Market return predictability; Chinese stock market; Machine learning (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207024001353
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:41:y:2025:i:3:p:1278-1295
DOI: 10.1016/j.ijforecast.2024.12.007
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().