EconPapers    
Economics at your fingertips  
 

The structural Theta method and its predictive performance in the M4-Competition

Giacomo Sbrana and Andrea Silvestrini

International Journal of Forecasting, 2025, vol. 41, issue 3, 940-952

Abstract: The Theta method is a well-established prediction benchmark widely used in forecast competitions. This method has received significant attention since it was introduced more than 20 years ago, with several authors proposing variants to improve its performance. This paper considers multiple sources of error versions for Theta, belonging to the family of structural time series models. It investigates its out-of-sample forecast performance using the extensive M4-Competition dataset, which includes 100,000 time series. We compare the proposed structural Theta model against several benchmarks, including all variants of the Theta method. The results demonstrate its remarkable predictive abilities as it outperforms all its variants and competitors, emerging as a solid benchmark for use in forecast competitions.

Keywords: Theta method; State-space models; Kalman filter; M4-Competition; Predictive accuracy (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207024000906
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:41:y:2025:i:3:p:940-952

DOI: 10.1016/j.ijforecast.2024.08.003

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-06-18
Handle: RePEc:eee:intfor:v:41:y:2025:i:3:p:940-952