Single-stage portfolio optimization with automated machine learning for M6
Xinyu Huang,
David P. Newton,
Emmanouil Platanakis and
Charles Sutcliffe
International Journal of Forecasting, 2025, vol. 41, issue 4, 1450-1460
Abstract:
The goal of the M6 forecasting competition was to shed light on the efficient market hypothesis by evaluating the forecasting abilities of participants and performance of their investment strategies. In this paper, we challenge the ‘estimate-then-optimize’ approach with one that directly optimizes portfolio weights from data. We frame portfolio selection as a constrained penalized regression problem. We present a data-driven approach that automatically performs model selection and hyperparameter tuning to maximize the objective without noisy or potentially misspecified intermediate steps. Finally, we show how the portfolio weights can be optimized using the Method of Moving Asymptotes. Testing on the M6 competition data, our approach achieves a global rate of return of 9.5% and an information ratio of 5.045, which is in stark contrast to the mean IR of the M6 competition teams of −3.421 and the IR of 0.453 for the M6 benchmark.
Keywords: Automated machine learning; Portfolio selection; Investment analysis; Estimation risk; Parameter uncertainty (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207024000918
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:41:y:2025:i:4:p:1450-1460
DOI: 10.1016/j.ijforecast.2024.08.004
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().