EconPapers    
Economics at your fingertips  
 

Probabilistic forecasting of cross-sectional returns: A Bayesian dynamic factor model with heteroskedasticity

Dan Weitzenfeld

International Journal of Forecasting, 2025, vol. 41, issue 4, 1477-1484

Abstract: The M6 Financial Forecasting Competition forecasting track required probabilistic forecasting of monthly returns for a universe of 100 assets. This paper describes a Bayesian dynamic factor model with heteroskedasticity that was used to win the year-long forecasting track. The model’s strengths include modularity, handling of missing data, and regularization through hierarchical distributions. Probability modeling and recent advances in probabilistic programming languages make defining such models and performing inference straightforward.

Keywords: Bayesian methods; Probability forecasting; Financial markets; Dynamic factor model; Heteroskedasticity (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016920702400061X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:41:y:2025:i:4:p:1477-1484

DOI: 10.1016/j.ijforecast.2024.06.007

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-09-30
Handle: RePEc:eee:intfor:v:41:y:2025:i:4:p:1477-1484