EconPapers    
Economics at your fingertips  
 

Robust returns ranking prediction and portfolio optimization for M6

Hongfeng Ai, Chenning Liu and Peng Lin

International Journal of Forecasting, 2025, vol. 41, issue 4, 1494-1504

Abstract: The M6 competition aims to address challenging problems in stock returns ranking prediction and portfolio optimization. To tackle the volatility and low signal-to-noise ratio in the stock market, our team designs the overall solution from the robustness perspective. Regarding returns ranking prediction, we present the MultiTask Deep Neural Network with Denoising Autoencoder Enhancement (MT-DNN-DAE), which incorporates the self-supervised learning of DAE and jointly optimizes the multi-task loss. We propose Robust Feature Selection (RFS) to identify features with a high signal-to-noise ratio for DAE’s representation learning. We construct a separate branch for important ID features to prevent information loss. Results show our solution can accurately predict returns ranking while maintaining generalization. On the task of portfolio optimization, a Differential Evolution algorithm is presented to optimize asset allocation and maximize returns under risk constraints, demonstrating improved performance over traditional techniques. These methods led to a 4th place global ranking in the M6 competition.

Keywords: Robust Feature Selection; Returns ranking prediction; Denoising AutoEncoders; Portfolio optimization; Non-linear optimization (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207024000359
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:41:y:2025:i:4:p:1494-1504

DOI: 10.1016/j.ijforecast.2024.04.004

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-09-30
Handle: RePEc:eee:intfor:v:41:y:2025:i:4:p:1494-1504