Quasi-average predictions and regression to the trend: An application to the M6 financial forecasting competition
Jose M.G. Vilar
International Journal of Forecasting, 2025, vol. 41, issue 4, 1505-1513
Abstract:
This paper presents the winning method that achieved fifth place overall in the M6 financial forecasting competition. The method is based on the idea that, under the efficient market hypothesis, it is often more effective to predict values close to the expected averages of categories and trends than to try to make precise predictions. By leveraging low-variability prediction methods, we forecast both the relative performance of multiple assets and their optimal investment positions. We demonstrate that combining asset-class and temporal averages yields modest but consistent advantages over reference indices. The results highlight the challenges of achieving above-average returns in efficient markets and the potential benefits of low-variability prediction methods in such contexts.
Keywords: Forecasting competitions; Forecast accuracy; Investment decisions; Assets; Volatility; Probability forecasting; Time series (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207024001341
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:41:y:2025:i:4:p:1505-1513
DOI: 10.1016/j.ijforecast.2024.12.006
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().