VAR Model with Sparse Group LASSO for Multi-population Mortality Forecasting
Tim J. Boonen and
Yuhuai Chen
International Journal of Forecasting, 2026, vol. 42, issue 1, 259-280
Abstract:
We introduce a spatial–temporally weighted vector autoregressive (SWVAR) model for modeling and forecasting mortality rates across multiple populations. First, we stack the mortality rates of the populations and build a vector autoregressive (VAR) model. Next, we apply the sparse group least absolute shrinkage and selection operator (sparse group LASSO) for fitting to avoid overparameterization. Furthermore, we integrate spatial–temporal weights, derived from age differences and geographic centroid distances, into the grouped penalty term. These approaches allow the resulting model to effectively combine information from multiple populations and reduce confounding factors associated with combined modeling. We demonstrate through a series of empirical experiments that the spatial–temporally weighted VAR model enhances estimation accuracy and exhibits superior in-sample fitting and out-of-sample forecasting performance.
Keywords: Mortality modeling; Forecasting; Multiple populations; Sparse group LASSO; Spatial–temporal weights (search for similar items in EconPapers)
Date: 2026
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207025000329
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:42:y:2026:i:1:p:259-280
DOI: 10.1016/j.ijforecast.2025.03.004
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().