Forecasting air passenger demand with a new hybrid ensemble approach
Feng Jin,
Yongwu Li,
Shaolong Sun and
Hongtao Li
Journal of Air Transport Management, 2020, vol. 83, issue C
Abstract:
Analyzing and modeling passenger demand dynamic, which has important implications on the management and the operation in the entire aviation industry, are deemed to be a tough challenge. Air passenger demand, however, exhibits consistently complex non-linearity and non-stationarity. To capture more precisely the aforementioned complex behavior, this paper proposes a hybrid approach VMD-ARMA/KELM-KELM for the short-term forecasting, which consists of variational mode decomposition (VMD), autoregressive moving average model (ARMA) and kernel extreme learning machine (KELM). First, VMD is adopted to decompose the original data into several mode functions so as to reduce their complexity. Then, the unit root test (ADF test) is employed to classify all the modes into the stable and unstable series. Meanwhile, the ARMA and the KELM models are used to forecast both the stationary and non-stationary components, respectively. Lastly, the final result is integrated by another KELM model incorporating the forecasting results of all components. In order to prove and verify the feasibility and robustness of the proposed approach, the passenger demands of Beijing, Guangzhou and Pudong airports are introduced to test the performance. Also, the experimental results show that the novel approach does have a more obviously advantage than other benchmark models regarding both accuracy and robustness analysis. Therefore, this approach can be utilized as a convincing tool for the air passenger demand forecasting.
Keywords: Air passenger demand forecasting; Variational mode decomposition; Autoregressive moving average model; Kernel extreme learning machine (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0969699719302261
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jaitra:v:83:y:2020:i:c:s0969699719302261
DOI: 10.1016/j.jairtraman.2019.101744
Access Statistics for this article
Journal of Air Transport Management is currently edited by Anne Graham
More articles in Journal of Air Transport Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().