Economics at your fingertips  

Grabit: Gradient tree-boosted Tobit models for default prediction

Fabio Sigrist and Christoph Hirnschall

Journal of Banking & Finance, 2019, vol. 102, issue C, 177-192

Abstract: A frequent problem in binary classification is class imbalance between a minority and a majority class such as defaults and non-defaults in default prediction. In this article, we introduce a novel binary classification model, the Grabit model, which is obtained by applying gradient tree boosting to the Tobit model. We show how this model can leverage auxiliary data to obtain increased predictive accuracy for imbalanced data. We apply the Grabit model to predicting defaults on loans made to Swiss small and medium-sized enterprises (SME) and obtain a large and significant improvement in predictive performance compared to other state-of-the-art approaches.

Keywords: Bankruptcy prediction; Censored regression; Class imbalance; Classification; Credit scoring (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1) Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

DOI: 10.1016/j.jbankfin.2019.03.004

Access Statistics for this article

Journal of Banking & Finance is currently edited by Ike Mathur

More articles in Journal of Banking & Finance from Elsevier
Bibliographic data for series maintained by Haili He ().

Page updated 2020-12-19
Handle: RePEc:eee:jbfina:v:102:y:2019:i:c:p:177-192