Bayesian inference for issuer heterogeneity in credit ratings migration
Ashay Kadam and
Peter Lenk
Journal of Banking & Finance, 2008, vol. 32, issue 10, 2267-2274
Abstract:
Rating transition matrices for corporate bond issuers are often based on fitting a discrete time Markov chain model to homogeneous cohorts. Literature has documented that rating migration matrices can differ considerably depending on the characteristics of the issuers in the pool used for estimation. However, it is also well known in the literature that a continuous time Markov chain gives statistically superior estimates of the rating migration process. It remains to verify and quantify the issuer heterogeneity in rating migration behavior using a continuous time Markov chain. We fill this gap in the literature. We provide Bayesian estimates to mitigate the problem of data sparsity. Default data, especially when narrowing down to issuers with specific characteristics, can be highly sparse. Using classical estimation tools in such a situation can result in large estimation errors. Hence we adopt Bayesian estimation techniques. We apply them to the Moodys corporate bond default database. Our results indicate strong country and industry effects on the determination of rating migration behavior. Using the CreditRisk+ framework, and a sample credit portfolio, we show that ignoring issuer heterogeneity can give erroneous estimates of Value-at-Risk and a misleading picture of the risk capital. This insight is consistent with some recent findings in the literature. Therefore, given the upcoming Basel II implementation, understanding issuer heterogeneity has important policy implications.
Keywords: Credit; risk; Risk; capital; Markov; chains; Bayesian; inference; Heterogeneity (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378-4266(08)00034-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jbfina:v:32:y:2008:i:10:p:2267-2274
Access Statistics for this article
Journal of Banking & Finance is currently edited by Ike Mathur
More articles in Journal of Banking & Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().