EconPapers    
Economics at your fingertips  
 

The role of autoregressive conditional skewness and kurtosis in the estimation of conditional VaR

Turan G. Bali, Hengyong Mo and Yi Tang

Journal of Banking & Finance, 2008, vol. 32, issue 2, 269-282

Abstract: This paper investigates the role of high-order moments in the estimation of conditional value at risk (VaR). We use the skewed generalized t distribution (SGT) with time-varying parameters to provide an accurate characterization of the tails of the standardized return distribution. We allow the high-order moments of the SGT density to depend on the past information set, and hence relax the conventional assumption in conditional VaR calculation that the distribution of standardized returns is iid. The maximum likelihood estimates show that the time-varying conditional volatility, skewness, tail-thickness, and peakedness parameters of the SGT density are statistically significant. The in-sample and out-of-sample performance results indicate that the conditional SGT-GARCH approach with autoregressive conditional skewness and kurtosis provides very accurate and robust estimates of the actual VaR thresholds.

Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (73)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378-4266(07)00182-3
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jbfina:v:32:y:2008:i:2:p:269-282

Access Statistics for this article

Journal of Banking & Finance is currently edited by Ike Mathur

More articles in Journal of Banking & Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jbfina:v:32:y:2008:i:2:p:269-282