Pricing options on scenario trees
Nikolas Topaloglou,
Hercules Vladimirou and
Stavros Zenios
Journal of Banking & Finance, 2008, vol. 32, issue 2, 283-298
Abstract:
We examine valuation procedures that can be applied to incorporate options in scenario-based portfolio optimization models. Stochastic programming models use discrete scenarios to represent the stochastic evolution of asset prices. At issue is the adoption of suitable procedures to price options on the basis of the postulated discrete distributions of asset prices so as to ensure internally consistent portfolio optimization models. We adapt and implement two methods to price European options in accordance with discrete distributions represented by scenario trees and assess their performance with numerical tests. We consider features of option prices that are observed in practice. We find that asymmetries and/or leptokurtic features in the distribution of the underlying materially affect option prices; we quantify the impact of higher moments (skewness and excess kurtosis) on option prices. We demonstrate through empirical tests using market prices of the S&P500 stock index and options on the index that the proposed procedures consistently approximate the observed prices of options under different market regimes, especially for deep out-of-the-money options.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378-4266(07)00183-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jbfina:v:32:y:2008:i:2:p:283-298
Access Statistics for this article
Journal of Banking & Finance is currently edited by Ike Mathur
More articles in Journal of Banking & Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().