Financial market models with Lévy processes and time-varying volatility
Young Shin Kim,
Svetlozar T. Rachev,
Michele Leonardo Bianchi and
Frank Fabozzi ()
Journal of Banking & Finance, 2008, vol. 32, issue 7, 1363-1378
Abstract:
Asset management and pricing models require the proper modeling of the return distribution of financial assets. While the return distribution used in the traditional theories of asset pricing and portfolio selection is the normal distribution, numerous studies that have investigated the empirical behavior of asset returns in financial markets throughout the world reject the hypothesis that asset return distributions are normally distribution. Alternative models for describing return distributions have been proposed since the 1960s, with the strongest empirical and theoretical support being provided for the family of stable distributions (with the normal distribution being a special case of this distribution). Since the turn of the century, specific forms of the stable distribution have been proposed and tested that better fit the observed behavior of historical return distributions. More specifically, subclasses of the tempered stable distribution have been proposed. In this paper, we propose one such subclass of the tempered stable distribution which we refer to as the "KR distribution". We empirically test this distribution as well as two other recently proposed subclasses of the tempered stable distribution: the Carr-Geman-Madan-Yor (CGMY) distribution and the modified tempered stable (MTS) distribution. The advantage of the KR distribution over the other two distributions is that it has more flexible tail parameters. For these three subclasses of the tempered stable distribution, which are infinitely divisible and have exponential moments for some neighborhood of zero, we generate the exponential Lévy market models induced from them. We then construct a new GARCH model with the infinitely divisible distributed innovation and three subclasses of that GARCH model that incorporates three observed properties of asset returns: volatility clustering, fat tails, and skewness. We formulate the algorithm to find the risk-neutral return processes for those GARCH models using the "change of measure" for the tempered stable distributions. To compare the performance of those exponential Lévy models and the GARCH models, we report the results of the parameters estimated for the S&P 500 index and investigate the out-of-sample forecasting performance for those GARCH models for the S&P 500 option prices.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (45)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378-4266(07)00352-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jbfina:v:32:y:2008:i:7:p:1363-1378
Access Statistics for this article
Journal of Banking & Finance is currently edited by Ike Mathur
More articles in Journal of Banking & Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().