Optimal city hierarchy: A dynamic programming approach to central place theory
Wen-Tai Hsu,
Thomas J. Holmes and
Frank Morgan
Journal of Economic Theory, 2014, vol. 154, issue C, 245-273
Abstract:
Central place theory is a key building block of economic geography and an empirically plausible description of city systems. This paper provides a rationale for central place theory via a dynamic programming formulation of the social planner's problem of city hierarchy. We show that there must be one and only one immediate smaller city between two neighboring larger-sized cities in any optimal solution. If the fixed cost of setting up a city is a power function, then the immediate smaller city will be located in the middle, confirming the locational pattern suggested by Christaller [4]. We also show that the solution can be approximated by iterating the mapping defined by the dynamic programming problem. The main characterization results apply to a general hierarchical problem with recursive divisions.
Keywords: Central place theory; City hierarchy; Dynamic programming; Principle of optimality; Fixed point (search for similar items in EconPapers)
JEL-codes: C61 R12 R13 (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0022053114001392
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jetheo:v:154:y:2014:i:c:p:245-273
DOI: 10.1016/j.jet.2014.09.018
Access Statistics for this article
Journal of Economic Theory is currently edited by A. Lizzeri and K. Shell
More articles in Journal of Economic Theory from Elsevier
Bibliographic data for series maintained by Catherine Liu ().