A behavioral study of “noise” in coordination games
Michael Mäs and
Heinrich H. Nax
Journal of Economic Theory, 2016, vol. 162, issue C, 195-208
Abstract:
‘Noise’ in this study, in the sense of evolutionary game theory, refers to deviations from prevailing behavioral rules. Analyzing data from a laboratory experiment on coordination in networks, we tested ‘what kind of noise’ is supported by behavioral evidence. This empirical analysis complements a growing theoretical literature on ‘how noise matters’ for equilibrium selection. We find that the vast majority of decisions (96%) constitute myopic best responses, but deviations continue to occur with probabilities that are sensitive to their costs, that is, less frequent when implying larger payoff losses relative to the myopic best response. In addition, deviation rates vary with patterns of realized payoffs that are related to trial-and-error behavior. While there is little evidence that deviations are clustered in time or space, there is evidence of individual heterogeneity.
Keywords: Behavioral game theory; Discrete choice; Evolution; Learning; Logit response; Stochastic stability; Trial-and-error (search for similar items in EconPapers)
JEL-codes: C73 C91 C92 (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0022053115002215
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jetheo:v:162:y:2016:i:c:p:195-208
DOI: 10.1016/j.jet.2015.12.010
Access Statistics for this article
Journal of Economic Theory is currently edited by A. Lizzeri and K. Shell
More articles in Journal of Economic Theory from Elsevier
Bibliographic data for series maintained by Catherine Liu ().