Learning with misattribution of reference dependence
Tristan Gagnon-Bartsch and
Benjamin Bushong
Journal of Economic Theory, 2022, vol. 203, issue C
Abstract:
We examine errors in learning that arise when an agent who suffers attribution bias fails to account for her reference-dependent utility. Such an agent neglects how the sensation of elation or disappointment relative to expectations contributes to her overall utility, and wrongly attributes this component of her utility to the intrinsic value of an outcome. In a sequential-learning environment, this form of misattribution generates contrast effects in evaluations and induces a recency bias: the misattributor's beliefs over-weight recent experiences and under-weight earlier ones. In the long-run, a loss-averse misattributor will grow unduly pessimistic and undervalue prospects in proportion to their variability. Both the short and long-run properties of beliefs under misattribution suggest a tendency to abandon worthwhile prospects when learning from experience. We additionally show how misattribution introduces incentives for familiar forms of expectations management.
Keywords: Learning; Attribution bias; Reference dependence; Misspecified models (search for similar items in EconPapers)
JEL-codes: D83 D84 D91 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0022053122000631
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jetheo:v:203:y:2022:i:c:s0022053122000631
DOI: 10.1016/j.jet.2022.105473
Access Statistics for this article
Journal of Economic Theory is currently edited by A. Lizzeri and K. Shell
More articles in Journal of Economic Theory from Elsevier
Bibliographic data for series maintained by Catherine Liu ().