How do machine learning algorithms perform in predicting hospital choices? evidence from changing environments
Devesh Raval,
Ted Rosenbaum and
Nathan Wilson ()
Journal of Health Economics, 2021, vol. 78, issue C
Abstract:
Researchers have found that machine learning methods are typically better at prediction than econometric models when the choice environment is stable. We study hospital demand models, and evaluate the relative performance of machine learning algorithms when the choice environment changes substantially due to natural disasters that closed previously available hospitals. While machine learning algorithms outperform traditional econometric models in prediction, the gain they provide shrinks when patients’ choice sets are more profoundly affected. We show that traditional econometric methods provide important additional information when there are major changes in the choice environment.
Keywords: Machine learning; Hospitals; Natural experiment; Patient choice; Prediction (search for similar items in EconPapers)
JEL-codes: C18 I11 L1 L41 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167629621000667
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jhecon:v:78:y:2021:i:c:s0167629621000667
DOI: 10.1016/j.jhealeco.2021.102481
Access Statistics for this article
Journal of Health Economics is currently edited by J. P. Newhouse, A. J. Culyer, R. Frank, K. Claxton and T. McGuire
More articles in Journal of Health Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().