EconPapers    
Economics at your fingertips  
 

The limit of the partial sums process of spatial least squares residuals

Wolfgang Bischoff and Wayan Somayasa

Journal of Multivariate Analysis, 2009, vol. 100, issue 10, 2167-2177

Abstract: We establish a functional central limit theorem for a sequence of least squares residuals of spatial data from a linear regression model. Under mild assumptions on the model we explicitly determine the limit process in the case where the assumed linear model is true. Moreover, in the case where the assumed linear model is not true we explicitly establish the limit process for the localized true regression function under mild conditions. These results can be used to develop non-parametric model checks for linear regression. Our proofs generalize ideas of a univariate geometrical approach due to Bischoff [W. Bischoff, The structure of residual partial sums limit processes of linear regression models, Theory Stoch. Process. 8 (24) (2002) 23-28] which is different to that proposed by MacNeill and Jandhyala [I.B. MacNeill, V.K. Jandhyala, Change-point methods for spatial data, in: G.P. Patil, et al. (Eds.), Multivariate Environmental Statistics. Papers Presented at the 7th International Conference on Multivariate Analysis held at Pennsylvania State University, University Park, PA, USA, May 5-9 1992, in: Ser. Stat. Probab., vol. 6, North-Holland, Amsterdam, 1993, pp. 289-306 (in English)]. Moreover, Xie and MacNeill [L. Xie, I.B. MacNeill, Spatial residual processes and boundary detection, South African Statist. J. 40 (1) (2006) 33-53] established the limit process of set indexed partial sums of regression residuals. In our framework we get that result as an immediate consequence of a result of Alexander and Pyke [K.S. Alexander, R. Pyke, A uniform central limit theorem for set-indexed partial-sum processes with finite variance, Ann. Probab. 14 (1986) 582-597]. The reason for that is that by our geometrical approach we recognize the structure of the limit process: it is a projection of the Brownian sheet onto a certain subspace of the reproducing kernel Hilbert space of the Brownian sheet. Several examples are discussed.

Keywords: Spatial; least; squares; residuals; Partial; sums; process; Set; indexed; partial; sums; Brownian; sheet; Brownian; pillow; Bounded; variation; Riemann-Stieltjes; integral (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(09)00092-X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:100:y:2009:i:10:p:2167-2177

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:100:y:2009:i:10:p:2167-2177