Generalized Bayes minimax estimation of the normal mean matrix with unknown covariance matrix
Hisayuki Tsukuma
Journal of Multivariate Analysis, 2009, vol. 100, issue 10, 2296-2304
Abstract:
This paper addresses the problem of estimating the normal mean matrix in the case of unknown covariance matrix. This problem is solved by considering generalized Bayesian hierarchical models. The resulting generalized Bayes estimators with respect to an invariant quadratic loss function are shown to be matricial shrinkage equivariant estimators and the conditions for their minimaxity are given.
Keywords: Decision; theory; Equivariance; Generalized; Bayes; estimation; Hierarchical; model; Minimaxity; Multivariate; linear; model; Posterior; mean; Quadratic; loss; Shrinkage; estimator (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(09)00090-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:100:y:2009:i:10:p:2296-2304
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().