Asymptotic normality and confidence intervals for inverse regression models with convolution-type operators
Nicolai Bissantz and
Melanie Birke
Journal of Multivariate Analysis, 2009, vol. 100, issue 10, 2364-2375
Abstract:
We consider inverse regression models with convolution-type operators which mediate convolution on (d>=1) and prove a pointwise central limit theorem for spectral regularisation estimators which can be applied to construct pointwise confidence regions. Here, we cope with the unknown bias of such estimators by undersmoothing. Moreover, we prove consistency of the residual bootstrap in this setting and demonstrate the feasibility of the bootstrap confidence bands at moderate sample sizes in a simulation study.
Keywords: Bootstrap; Inverse; problems; Model; selection; Testing (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(09)00083-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:100:y:2009:i:10:p:2364-2375
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().