Statistical estimation in varying coefficient models with surrogate data and validation sampling
Qihua Wang and
Riquan Zhang
Journal of Multivariate Analysis, 2009, vol. 100, issue 10, 2389-2405
Abstract:
Varying coefficient error-in-covariables models are considered with surrogate data and validation sampling. Without specifying any error structure equation, two estimators for the coefficient function vector are suggested by using the local linear kernel smoothing technique. The proposed estimators are proved to be asymptotically normal. A bootstrap procedure is suggested to estimate the asymptotic variances. The data-driven bandwidth selection method is discussed. A simulation study is conducted to evaluate the proposed estimating methods.
Keywords: Asymptotic; normality; Local; linear; method; Primary; data; Validation; data; Varying-coefficient; model (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(09)00093-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:100:y:2009:i:10:p:2389-2405
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().