Parametric estimation and tests through divergences and the duality technique
Michel Broniatowski and
Amor Keziou
Journal of Multivariate Analysis, 2009, vol. 100, issue 1, 16-36
Abstract:
We introduce estimation and test procedures through divergence optimization for discrete or continuous parametric models. This approach is based on a new dual representation for divergences. We treat point estimation and tests for simple and composite hypotheses, extending the maximum likelihood technique. Another view of the maximum likelihood approach, for estimation and tests, is given. We prove existence and consistency of the proposed estimates. The limit laws of the estimates and test statistics (including the generalized likelihood ratio one) are given under both the null and the alternative hypotheses, and approximations of the power functions are deduced. A new procedure of construction of confidence regions, when the parameter may be a boundary value of the parameter space, is proposed. Also, a solution to the irregularity problem of the generalized likelihood ratio test pertaining to the number of components in a mixture is given, and a new test is proposed, based on [chi]2-divergence on signed finite measures and the duality technique.
Keywords: 62F03; 62F10; 62F30; Parametric; estimation; Parametric; test; Maximum; likelihood; Mixture; Boundary; valued; parameter; Power; function; Duality; [phi]-divergence (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00103-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:100:y:2009:i:1:p:16-36
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().