Robust dimension reduction based on canonical correlation
Jianhui Zhou
Journal of Multivariate Analysis, 2009, vol. 100, issue 1, 195-209
Abstract:
The canonical correlation (CANCOR) method for dimension reduction in a regression setting is based on the classical estimates of the first and second moments of the data, and therefore sensitive to outliers. In this paper, we study a weighted canonical correlation (WCANCOR) method, which captures a subspace of the central dimension reduction subspace, as well as its asymptotic properties. In the proposed WCANCOR method, each observation is weighted based on its Mahalanobis distance to the location of the predictor distribution. Robust estimates of the location and scatter, such as the minimum covariance determinant (MCD) estimator of Rousseeuw [P.J. Rousseeuw, Multivariate estimation with high breakdown point, Mathematical Statistics and Applications B (1985) 283-297], can be used to compute the Mahalanobis distance. To determine the number of significant dimensions in WCANCOR, a weighted permutation test is considered. A comparison of SIR, CANCOR and WCANCOR is also made through simulation studies to show the robustness of WCANCOR to outlying observations. As an example, the Boston housing data is analyzed using the proposed WCANCOR method.
Keywords: 62H12; Canonical; correlation; Dimension; reduction; MCD; estimator; Permutation; test; Robustness (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00108-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:100:y:2009:i:1:p:195-209
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().