EconPapers    
Economics at your fingertips  
 

Estimators for alternating nonlinear autoregression

Ursula U. Müller, Anton Schick and Wolfgang Wefelmeyer

Journal of Multivariate Analysis, 2009, vol. 100, issue 2, 266-277

Abstract: Suppose we observe a time series that alternates between different nonlinear autoregressive processes. We give conditions under which the model is locally asymptotically normal, derive a characterization of efficient estimators for differentiable functionals of the model, and use it to construct efficient estimators for the autoregression parameters and the innovation distributions. Surprisingly, the estimators for the autoregression parameters can be improved if we know that the innovation densities are equal.

Keywords: 62G20; 62M05; Convolution; theorem; Regular; estimator; Asymptotically; linear; estimator; Newton-Raphson; procedure; Weighted; least; squares; estimator; Linear; autoregression (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00117-6
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:100:y:2009:i:2:p:266-277

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:100:y:2009:i:2:p:266-277