EconPapers    
Economics at your fingertips  
 

Asymptotically efficient two-sample rank tests for modal directions on spheres

Ming-Tien Tsai

Journal of Multivariate Analysis, 2009, vol. 100, issue 3, 445-458

Abstract: A general class of optimal and distribution-free rank tests for the two-sample modal directions problem on (hyper-) spheres is proposed, along with an asymptotic distribution theory for such spherical rank tests. The asymptotic optimality of the spherical rank tests in terms of power-equivalence to the spherical likelihood ratio tests is studied, while the spherical Wilcoxon rank test, an important case for the class of spherical rank tests, is further investigated. A data set is reanalyzed and some errors made in previous studies are corrected. On the usual sphere, a lower bound on the asymptotic Pitman relative efficiency relative to Hotelling's T2-type test is established, and a new distribution for which the spherical Wilcoxon rank test is optimal is also introduced.

Keywords: 62H11; 62H15; Directional; and; axial; data; Optimal; spherical; rank; test; Randomly; weighted; spherical; distance; Rotation-equivariance; Spherical; Wilcoxon; rank; test (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00150-4
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:100:y:2009:i:3:p:445-458

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:100:y:2009:i:3:p:445-458