A family of kurtosis orderings for multivariate distributions
Jin Wang
Journal of Multivariate Analysis, 2009, vol. 100, issue 3, 509-517
Abstract:
In this paper, a family of kurtosis orderings for multivariate distributions is proposed and studied. Each ordering characterizes in an affine invariant sense the movement of probability mass from the "shoulders" of a distribution to either the center or the tails or both. All even moments of the Mahalanobis distance of a random vector from its mean (if exists) preserve a subfamily of the orderings. For elliptically symmetric distributions, each ordering determines the distributions up to affine equivalence. As applications, the orderings are used to study elliptically symmetric distributions. Ordering results are established for three important families of elliptically symmetric distributions: Kotz type distributions, Pearson Type VII distributions, and Pearson Type II distributions.
Keywords: primary; 62G05 secondary; 62H05 Kurtosis Peakedness Tailweight Ordering Elliptically symmetric distributions (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00153-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:100:y:2009:i:3:p:509-517
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().