EconPapers    
Economics at your fingertips  
 

Nonlinear principal components, II: Characterization of normal distributions

Ernesto Salinelli

Journal of Multivariate Analysis, 2009, vol. 100, issue 4, 652-660

Abstract: Nonlinear principal components are defined for normal random vectors. Their properties are investigated and interpreted in terms of the classical linear principal component analysis. A characterization theorem is proven. All these results are employed to give a unitary interpretation to several different issues concerning the Chernoff-Poincaré type inequalities and their applications to the characterization of normal distributions.

Keywords: primary; 62H25 secondary; 60E05; 47A75; 49R50 Nonlinear principal components Normal distributions Chernoff inequality Hermite polynomials (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00163-2
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:100:y:2009:i:4:p:652-660

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:100:y:2009:i:4:p:652-660