EconPapers    
Economics at your fingertips  
 

On weighting of bivariate margins in pairwise likelihood

Harry Joe and Youngjo Lee

Journal of Multivariate Analysis, 2009, vol. 100, issue 4, 670-685

Abstract: Composite and pairwise likelihood methods have recently been increasingly used. For clustered data with varying cluster sizes, we study asymptotic relative efficiencies for various weighted pairwise likelihoods, with weight being a function of cluster size. For longitudinal data, we also study weighted pairwise likelihoods with weights that can depend on lag. Good choice of weights are needed to avoid the undesirable behavior of estimators with low efficiency. Some analytic results are obtained using the multivariate normal distribution. For clustered data, a practically good choice of weight is obtained after study of relative efficiencies for an exchangeable multivariate normal model; they are different from weights that had previously been suggested. For longitudinal data, there are advantages to only include bivariate margins of adjacent or nearly adjacent pairs in the weighted pairwise likelihood.

Keywords: primary; 62H12 secondary; 62F12 Composite likelihood Binary probit Clustered data Longitudinal data (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00166-8
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:100:y:2009:i:4:p:670-685

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:100:y:2009:i:4:p:670-685