On depth measures and dual statistics. A methodology for dealing with general data
Antonio Cuevas and
Ricardo Fraiman
Journal of Multivariate Analysis, 2009, vol. 100, issue 4, 753-766
Abstract:
A general depth measure, based on the use of one-dimensional linear continuous projections, is proposed. The applicability of this idea in different statistical setups (including inference in functional data analysis, image analysis and classification) is discussed. A special emphasis is made on the possible usefulness of this method in some statistical problems where the data are elements of a Banach space. The asymptotic properties of the empirical approximation of the proposed depth measure are investigated. In particular, its asymptotic distribution is obtained through U-statistics techniques. The practical aspects of these ideas are discussed through a small simulation study and a real-data example.
Keywords: primary; 62G07 secondary; 62G20 Depth measures Functional data Projections method Supervised classification (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (24)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00179-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:100:y:2009:i:4:p:753-766
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().