A refined Jensen's inequality in Hilbert spaces and empirical approximations
Samantha Leorato
Journal of Multivariate Analysis, 2009, vol. 100, issue 5, 1044-1060
Abstract:
Let be a convex mapping and a Hilbert space. In this paper we prove the following refinement of Jensen's inequality: for every A,B such that and B[subset of]A. Expectations of Hilbert-space-valued random elements are defined by means of the Pettis integrals. Our result generalizes a result of [S. Karlin, A. Novikoff, Generalized convex inequalities, Pacific J. Math. 13 (1963) 1251-1279], who derived it for . The inverse implication is also true if P is an absolutely continuous probability measure. A convexity criterion based on the Jensen-type inequalities follows and we study its asymptotic accuracy when the empirical distribution function based on an n-dimensional sample approximates the unknown distribution function. Some statistical applications are addressed, such as nonparametric estimation and testing for convex regression functions or other functionals.
Keywords: 60E15; 62G08; Jensen's; inequality; Supporting; hyperplane; Empirical; measure; Convex; regression; function; Linearly; ordered; classes; of; sets; Pettis; integral (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00216-9
Full text for ScienceDirect subscribers only
Related works:
Working Paper: A refined Jensen’s inequality in Hilbert spaces and empirical approximations (2008) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:100:y:2009:i:5:p:1044-1060
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().