EconPapers    
Economics at your fingertips  
 

Nonconcave penalized inverse regression in single-index models with high dimensional predictors

Li-Ping Zhu and Li-Xing Zhu

Journal of Multivariate Analysis, 2009, vol. 100, issue 5, 862-875

Abstract: In this paper we aim to estimate the direction in general single-index models and to select important variables simultaneously when a diverging number of predictors are involved in regressions. Towards this end, we propose the nonconcave penalized inverse regression method. Specifically, the resulting estimation with the SCAD penalty enjoys an oracle property in semi-parametric models even when the dimension, pn, of predictors goes to infinity. Under regularity conditions we also achieve the asymptotic normality when the dimension of predictor vector goes to infinity at the rate of pn=o(n1/3) where n is sample size, which enables us to construct confidence interval/region for the estimated index. The asymptotic results are augmented by simulations, and illustrated by analysis of an air pollution dataset.

Keywords: 62H15; 62G20; Dimension; reduction; Diverging; parameters; Inverse; regression; SCAD; Sparsity (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00191-7
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:100:y:2009:i:5:p:862-875

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:100:y:2009:i:5:p:862-875