Asymptotic expansions of test statistics for dimensionality and additional information in canonical correlation analysis when the dimension is large
Tetsuro Sakurai
Journal of Multivariate Analysis, 2009, vol. 100, issue 5, 888-901
Abstract:
This paper examines asymptotic expansions of test statistics for dimensionality and additional information in canonical correlation analysis based on a sample of size N=n+1 on two sets of variables, i.e., and . These problems are related to dimension reduction. The asymptotic approximations of the statistics have been studied extensively when dimensions p1 and p2 are fixed and the sample size N tends to infinity. However, the approximations worsen as p1 and p2 increase. This paper derives asymptotic expansions of the test statistics when both the sample size and dimension are large, assuming that and have a joint (p1+p2)-variate normal distribution. Numerical simulations revealed that this approximation is more accurate than the classical approximation as the dimension increases.
Keywords: primary; 62H20 secondary; 62H15 Asymptotic expansion Additional information Canonical correlation analysis Tests for dimensionality High-dimensional framework (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00189-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:100:y:2009:i:5:p:888-901
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().