EconPapers    
Economics at your fingertips  
 

Multivariate mode hunting: Data analytic tools with measures of significance

Prabir Burman and Wolfgang Polonik

Journal of Multivariate Analysis, 2009, vol. 100, issue 6, 1198-1218

Abstract: Multivariate mode hunting is of increasing practical importance. Only a few such methods exist, however, and there usually is a trade-off between practical feasibility and theoretical justification. In this paper we attempt to do both. We propose a method for locating isolated modes (or better, modal regions) in a multivariate data set without pre-specifying their total number. Information on significance of the findings is provided by means of formal testing for the presence of antimodes. Critical values of the tests are derived from large sample considerations. The method is designed to be computationally feasible in moderate dimensions, and it is complemented by diagnostic plots. Since the null hypothesis under consideration is highly composite the proposed tests involve calibration in order to ensure a correct (asymptotic) level. Our methods are illustrated by application to real data sets.

Keywords: primary; 62G99; 62H99 secondary; 62G20 Brownian bridge Distribution free Modality Nearest neighbor method Testing for antimodes VC-classes (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00235-2
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:100:y:2009:i:6:p:1198-1218

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:100:y:2009:i:6:p:1198-1218