EconPapers    
Economics at your fingertips  
 

A class of bivariate exponential distributions

Giuliana Regoli

Journal of Multivariate Analysis, 2009, vol. 100, issue 6, 1261-1269

Abstract: We introduce a class of absolutely continuous bivariate exponential distributions, generated from quadratic forms of standard multivariate normal variates. This class is quite flexible and tractable, since it is regulated by two parameters only, derived from the matrices of the quadratic forms: the correlation and the correlation of the squares of marginal components. A simple representation of the whole class is given in terms of 4-dimensional matrices. Integral forms allow evaluating the distribution function and the density function in most of the cases. The class is introduced as a subclass of bivariate distributions with chi-square marginals; bounds for the dimension of the generating normal variable are underlined in the general case. Finally, we sketch the extension to the multivariate case.

Keywords: 62E15; 60E05; Bivariate; exponential; distributions; Bivariate; chi-square; distributions; Correlated; quadratic; forms (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00256-X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:100:y:2009:i:6:p:1261-1269

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:100:y:2009:i:6:p:1261-1269