Flexible modeling based on copulas in nonparametric median regression
Roel Braekers and
Ingrid Van Keilegom ()
Journal of Multivariate Analysis, 2009, vol. 100, issue 6, 1270-1281
Abstract:
Consider the model Y=m(X)+[epsilon], where m([dot operator])=med(Y[dot operator]) is unknown but smooth. It is often assumed that [epsilon] and X are independent. However, in practice this assumption is violated in many cases. In this paper we propose modeling the dependence between [epsilon] and X by means of a copula model, i.e., where is a copula function depending on an unknown parameter [theta], and F[epsilon] and FX are the marginals of [epsilon] and X. Since many parametric copula families contain the independent copula as a special case, the so-obtained regression model is more flexible than the 'classical' regression model. We estimate the parameter [theta] via a pseudo-likelihood method and prove the asymptotic normality of the estimator, based on delicate empirical process theory. We also study the estimation of the conditional distribution of Y given X. The procedure is illustrated by means of a simulation study, and the method is applied to data on food expenditures in households.
Keywords: primary; 62G08 secondary; 62G05; 62G20; 62F12; 62E20 Conditional distribution Copulas Empirical processes Median regression Nonparametric regression Quantiles Weak convergence (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00255-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:100:y:2009:i:6:p:1270-1281
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().