Canonical representation of conditionally specified multivariate discrete distributions
Edward H. Ip and
Yuchung J. Wang
Journal of Multivariate Analysis, 2009, vol. 100, issue 6, 1282-1290
Abstract:
Most work on conditionally specified distributions has focused on approaches that operate on the probability space, and the constraints on the probability space often make the study of their properties challenging. We propose decomposing both the joint and conditional discrete distributions into characterizing sets of canonical interactions, and we prove that certain interactions of a joint distribution are shared with its conditional distributions. This invariance opens the door for checking the compatibility between conditional distributions involving the same set of variables. We formulate necessary and sufficient conditions for the existence and uniqueness of discrete conditional models, and we show how a joint distribution can be easily computed from the pool of interactions collected from the conditional distributions. Hence, the methods can be used to calculate the exact distribution of a Gibbs sampler. Furthermore, issues such as how near compatibility can be reconciled are also discussed. Using mixed parametrization, we show that the proposed approach is based on the canonical parameters, while the conventional approaches are based on the mean parameters. Our advantage is partly due to the invariance that holds only for the canonical parameters.
Keywords: primary; 62E10; 62E15 secondary; 62E17; 62H05 Canonical parameter Characterizing set of interactions Compatibility check Exponential family Near-compatible Pseudo-Gibbs sampler (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00254-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:100:y:2009:i:6:p:1282-1290
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().