Asymptotic distributions of robust shape matrices and scales
Gabriel Frahm
Journal of Multivariate Analysis, 2009, vol. 100, issue 7, 1329-1337
Abstract:
It has been frequently observed in the literature that many multivariate statistical methods require the covariance or dispersion matrix [Sigma] of an elliptical distribution only up to some scaling constant. If the topic of interest is not the scale but only the shape of the elliptical distribution, it is not meaningful to focus on the asymptotic distribution of an estimator for [Sigma] or another matrix [Gamma][is proportional to][Sigma]. In the present work, robust estimators for the shape matrix and the associated scale are investigated. Explicit expressions for their joint asymptotic distributions are derived. It turns out that if the joint asymptotic distribution is normal, the estimators presented are asymptotically independent for one and only one specific choice of the scale function. If it is non-normal (this holds for example if the estimators for the shape matrix and scale are based on the minimum volume ellipsoid estimator) only the scale function presented leads to asymptotically uncorrelated estimators. This is a generalization of a result obtained by Paindaveine [D. Paindaveine, A canonical definition of shape, Statistics and Probability Letters 78 (2008) 2240-2247] in the context of local asymptotic normality theory.
Keywords: Local; asymptotic; normality; M-estimator; R-estimator; Robust; covariance; matrix; estimator; Scale-invariant; function; S-estimator; Shape; matrix; Tyler's; M-estimator (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00253-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:100:y:2009:i:7:p:1329-1337
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().