On the degrees of freedom in shrinkage estimation
Kengo Kato
Journal of Multivariate Analysis, 2009, vol. 100, issue 7, 1338-1352
Abstract:
We study the degrees of freedom in shrinkage estimation of regression coefficients. Generalizing the idea of the Lasso, we consider the problem of estimating the coefficients by minimizing the sum of squares with the constraint that the coefficients belong to a closed convex set. Based on a differential geometric approach, we derive an unbiased estimator of the degrees of freedom for this estimation method, under a smoothness assumption on the boundary of the closed convex set. The result presented in this paper is applicable to estimation with a wide class of constraints. As an application, we obtain a Cp type criterion and AIC for selecting tuning parameters.
Keywords: AIC; Degrees; of; freedom; Fused; Lasso; Group; Lasso; Lasso; Mallows'; Cp; Second; fundamental; form; Shrinkage; estimation; Stein's; lemma; Tubal; coordinates (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00275-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:100:y:2009:i:7:p:1338-1352
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().