EconPapers    
Economics at your fingertips  
 

Testing independence in nonparametric regression

Natalie Neumeyer

Journal of Multivariate Analysis, 2009, vol. 100, issue 7, 1551-1566

Abstract: We propose a new test for independence of error and covariate in a nonparametric regression model. The test statistic is based on a kernel estimator for the L2-distance between the conditional distribution and the unconditional distribution of the covariates. In contrast to tests so far available in literature, the test can be applied in the important case of multivariate covariates. It can also be adjusted for models with heteroscedastic variance. Asymptotic normality of the test statistic is shown. Simulation results and a real data example are presented.

Keywords: Bootstrap; Goodness-of-fit; Kernel; estimator; Nonparametric; regression; Test; for; independence (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(09)00012-8
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:100:y:2009:i:7:p:1551-1566

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:100:y:2009:i:7:p:1551-1566