EconPapers    
Economics at your fingertips  
 

Estimation of autoregressive models with epsilon-skew-normal innovations

Pascal Bondon

Journal of Multivariate Analysis, 2009, vol. 100, issue 8, 1761-1776

Abstract: A non-Gaussian autoregressive model with epsilon-skew-normal innovations is introduced. Moments and maximum likelihood estimators of the parameters are proposed and their limit distributions are derived. Monte Carlo simulation results are analysed and the model is fitted to a real time series.

Keywords: Non-Gaussian; time; series; Autoregression; Maximum; likelihood; estimation; Skewness; Skew-normal; distribution (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(09)00036-0
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:100:y:2009:i:8:p:1761-1776

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:100:y:2009:i:8:p:1761-1776