Multiple imputation and other resampling schemes for imputing missing observations
Muni S. Srivastava and
Mohammad Dolatabadi
Journal of Multivariate Analysis, 2009, vol. 100, issue 9, 1919-1937
Abstract:
The problem of imputing missing observations under the linear regression model is considered. It is assumed that observations are missing at random and all the observations on the auxiliary or independent variables are available. Estimates of the regression parameters based on singly and multiply imputed values are given. Jackknife as well as bootstrap estimates of the variance of the singly imputed estimator of the regression parameters are given. These estimators are shown to be consistent estimators. The asymptotic distributions of the imputed estimators are also given to obtain interval estimates of the parameters of interest. These interval estimates are then compared with the interval estimates obtained from multiple imputation. It is shown that singly imputed estimators perform at least as good as multiply imputed estimators. A new nonparametric multiply imputed estimator is proposed and shown to perform as good as a multiply imputed estimator under normality. The singly imputed estimator, however, still remains at least as good as a multiply imputed estimator.
Keywords: Missing; data; Nonresponse; Jackknife; variance; estimation; Bootstrap; Multiple; and; single; imputation; Regression; model; Resampling; Comparison; of; confidence; intervals (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(09)00115-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:100:y:2009:i:9:p:1919-1937
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().