Moderate deviation principle for autoregressive processes
Miao Yu and
Shen Si
Journal of Multivariate Analysis, 2009, vol. 100, issue 9, 1952-1961
Abstract:
A moderate deviation principle for autoregressive processes is established. As statistical applications we provide the moderate deviation estimates of the least square and the Yule-Walker estimators of the parameter of an autoregressive process. The main assumption on the autoregressive process is the Gaussian integrability condition for the noise, which is weaker than the assumption of Logarithmic Sobolev Inequality in [H. Djellout, A. Guillin, L. Wu, Moderate deviations of empirical periodogram and nonlinear functionals of moving average processes, Ann. I. H. Poincaré-PR 42 (2006) 393-416].
Keywords: Moderate; deviation; Autoregressive; processes; Least; squares; estimator; Yule-Walker; estimator (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(09)00120-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:100:y:2009:i:9:p:1952-1961
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().